CODE大全
版权声明:本文为博主原创文章,未经博主允许不得转载。

高中数学正态分布在统计学中的应用

发布时间:『 2017-08-02 09:51』  博客类别:日志  阅读(1091) 评论(0)

统计学里面,正态分布(normal distribution)最常见。男女身高、寿命、血压、考试成绩、测量误差等等,都属于正态分布。

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

正态分布

以前,我认为中间状态是事物的常态,过高和过低都属于少数,这导致了正态分布的普遍性。最近,读到了 John D. Cook 的文章,才知道我的这种想法是错的。

正态分布为什么常见?真正原因是中心极限定理(central limit theorem)。

"多个独立统计量的和的平均值,符合正态分布。"

正态分布

上图中,随着统计量个数的增加,它们和的平均值越来越符合正态分布。

根据中心极限定理,如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。

举例来说,人的身高既有先天因素(基因),也有后天因素(营养)。每一种因素对身高的影响都是一个统计量,不管这些统计量本身是什么分布,它们和的平均值符合正态分布。(注意:男性身高和女性身高都是正态分布,但男女混合人群的身高不是正态分布。)

许多事物都受到多种因素的影响,这导致了正态分布的常见。

读到这里,读者可能马上就会提出一个问题:正态分布是对称的(高个子与矮个子的比例相同),但是很多真实世界的分布是不对称的。

正态分布是对称的

比如,财富的分布就是不对称的,富人的有钱程度(可能比平均值高出上万倍),远远超出穷人的贫穷程度(平均值的十分之一就是赤贫了),即财富分布曲线有右侧的长尾。相比来说,身高的差异就小得多,最高和最矮的人与平均身高的差距,都在30%多。

这是为什么呢,财富明明也受到多种因素的影响,怎么就不是正态分布呢?

原来,正态分布只适合各种因素累加的情况,如果这些因素不是彼此独立的,会互相加强影响,那么就不是正态分布了。一个人是否能够挣大钱,由多种因素决定:

  • 家庭

  • 教育

  • 运气

  • 工作

  • ...

这些因素都不是独立的,会彼此加强。如果出生在上层家庭,那么你就有更大的机会接受良好的教育、找到高薪的工作、遇见好机会,反之亦然。也就是说,这不是 1 + 1 = 2 的效果,而是 1 + 1 > 2。

统计学家发现,如果各种因素对结果的影响不是相加,而是相乘,那么最终结果不是正态分布,而是对数正态分布(log normal distribution),即x的对数值log(x)满足正态分布。

对数正态分布曲线图

这就是说,财富的对数值满足正态分布。如果平均财富是10,000元,那么1000元~10,000元之间的穷人(比平均值低一个数量级,宽度为9000)与10,000元~100,000元之间的富人(比平均值高一个数量级,宽度为90,为000)人数一样多。因此,财富曲线左侧的范围比较窄,右侧出现长尾。

参考资料


——— 全文完 ———
如有版权问题,请联系532009913@qq.com。
关键字:   正态分布     统计学  
评论信息
暂无评论
发表评论
验证码: 
Powered by CODE大全 | 鄂ICP备14009759号-2 | 网站留言 Copyright © 2014-2016 CODE大全 版权所有